Code: 20CS4701A

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

DEEP LEARNING

(COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours	Max. Marks: 70			
Note: 1. This paper contains questions from 5 u	units of Syllabus. Each unit carries			
14 marks and have an internal choice of	of Questions.			
2. All parts of Question must be answered in one place.				
BL – Blooms Level	CO – Course Outcome			

			BL	СО	Max. Marks	
	UNIT-I					
1	a)	Describe the concept of Deep Learning.	L2	CO1	7 M	
		Explain its historical evolution and how it				
		differs from traditional machine learning				
		approaches.				
	b)	Compare and Contrast any three common	L2	CO1	7 M	
		activation functions.				
OR						
2	a)	Discuss the significance of hyperparameters	L2	CO1	7 M	
	in performance of the model training.					
	b)	Explain at least three real-world	L2	CO1	7 M	
		applications where deep learning has shown				
		significant success.				

		UNIT-II			
3	a)	Distinguish the key differences between a Variational Autoencoder (VAE) and a Traditional Autoencoder (TAE)? How does a VAE enable generating new data samples.	L4	CO2	7 M
	b)	Demonstrate the fundamental idea behind Deep Belief Networks (DBNs).	L3	CO2	7 M
		OR			
4	a)	Construct the architecture of Generative Adversarial Networks (GANs) with an example.	L3	CO2	7 M
	b)	Describe the architecture and training process of a Restricted Boltzmann Machine (RBM) and provide one example.	L2	CO2	7 M
		UNIT-III			
5	a)	What are structured outputs in the context of CNNs, and why are they important in tasks like image segmentation or object detection? Explain with an example.	L4	CO3	7 M
	b)	Describe the concept of random or unsupervised features in CNNs.	L2	CO3	7 M
		OR		<u> </u>	
6	a)	Explaintwoefficientconvolutionalgorithms used in CNNs.	L4	CO3	7 M
	b)	Compare and Contrast max pooling and average pooling, highlighting their strengths and weaknesses.	L4	CO3	7 M

		UNIT-IV			
7	a)	Construct the architecture of an LSTM cell and how it retains and updates information over time.	L3	CO3	7 M
	b)	What is the primary role of an Encoder- Decoder architecture in sequence-to- sequence tasks? Discuss with an example.	L2	CO3	7 M
	L	OR		<u> </u>	
8	a)	Explain the concept of Deep Recurrent Networks (DRN) and how it enables the modeling of complex sequential dependencies.	L4	CO3	7 M
	b)	Illustrate the core idea behind Gated Recurrent Unit (GRU) and how they extend the capabilities of standard RNNs.	L3	CO3	7 M
		UNIT-V			
9	a)	Discuss the significance of Deep Learning in the field of Speech Recognition.	L2	CO4	7 M
	b)	Illustrate the application of Deep Learning in the healthcare domain with an example.	L3	CO4	7 M
		OR			
10	a)	Demonstrate the evolution of deep neural networks in Computer Vision and their impact in image processing applications.	L3	CO4	7 M
	b)	Explain the impact of deep learning in improving machine translation, sentiment analysis.	L4	CO4	7 M